Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Vet Microbiol ; 292: 110065, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564904

RESUMO

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes acute enteric disease in piglets and severely threatens the pig industry all over the world. Death domain-associated protein (DAXX) is a classical chaperone protein involved in multiple biological processes, such as cell apoptosis, transcriptional regulation, DNA damage repair, and host innate immunity. However, whether DAXX functions in the anti-PEDV innate immune responses remains unclear. In this study, we found that PEDV infection upregulated DAXX expression and induced its nucleocytoplasmic translocation in IPEC-J2 cells. Furthermore, we found that DAXX overexpression was inhibitory to PEDV replication, while downregulation of DAXX by RNA interference facilitated PEDV replication. The antiviral activity of DAXX was due to its positive effect on IFN-λ3-STAT1 signaling, as DAXX positively regulated STAT1 activation through their interaction in cytoplasm and enhancing the downstream ISG15 expression. Mutation of tryptophan at 621 to alanine in DAXX increased its abundance in the cytoplasm, leading to the upregulation of STAT1 phosphorylation and ISG15 expression. It indicated that cytoplasmic fraction of DAXX was advantageous for the STAT1-ISG15 signaling axis and PEDV inhibition. In summary, these results show that DAXX inhibits PEDV infection by increasing IFN-λ3-induced STAT1 phosphorylation and the downstream ISG15 expression.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Linhagem Celular , Fator de Transcrição STAT1/genética , Domínio de Morte , Infecções por Coronavirus/veterinária , Replicação Viral
2.
Artigo em Inglês | MEDLINE | ID: mdl-38511325

RESUMO

BACKGROUND: Restoring the capacity of endothelial progenitor cells (EPCs) to promote angiogenesis is the major therapeutic strategy of diabetic peripheral artery disease. The aim of this study was to investigate the effects of GLP-1 (glucagon-like peptide 1; 32-36)-an end product of GLP-1-on angiogenesis of EPCs and T1DM (type 1 diabetes) mice, as well as its interaction with the classical GLP-1R (GLP-1 receptor) pathway and its effect on mitochondrial metabolism. METHODS: In in vivo experiments, we conducted streptozocin-induced type 1 diabetic mice as a murine model of unilateral hind limb ischemia to examine the therapeutic potential of GLP-1(32-36) on angiogenesis. We also generated Glp1r-/- mice to detect whether GLP-1R is required for angiogenic function of GLP-1(32-36). In in vitro experiments, EPCs isolated from the mouse bone marrow and human umbilical cord blood samples were used to detect GLP-1(32-36)-mediated angiogenic capability under high glucose treatment. RESULTS: We demonstrated that GLP-1(32-36) did not affect insulin secretion but could significantly rescue angiogenic function and blood perfusion in ischemic limb of streptozocin-induced T1DM mice, a function similar to its parental GLP-1. We also found that GLP-1(32-36) promotes angiogenesis in EPCs exposed to high glucose. Specifically, GLP-1(32-36) has a causal role in improving fragile mitochondrial function and metabolism via the GLP-1R-mediated pathway. We further demonstrated that GLP-1(32-36) rescued diabetic ischemic lower limbs by activating the GLP-1R-dependent eNOS (endothelial NO synthase)/cGMP/PKG (protein kinase G) pathway. CONCLUSIONS: Our study provides a novel mechanism with which GLP-1(32-36) acts in modulating metabolic reprogramming toward glycolytic flux in partnership with GLP-1R for improved angiogenesis in high glucose-exposed EPCs and T1DM murine models. We propose that GLP-1(32-36) could be used as a monotherapy or add-on therapy with existing treatments for peripheral artery disease. REGISTRATION: URL: www.ebi.ac.uk/metabolights/; Unique identifier: MTBLS9543.

3.
J Biol Chem ; 300(4): 107135, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38447796

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric pathogen of the coronavirus family and caused severe economic losses to the global swine industry. Previous studies have established that p53 is a host restriction factor for PEDV infection, and p53 degradation occurs in PEDV-infected cells. However, the underlying molecular mechanisms through which PEDV viral proteins regulate p53 degradation remain unclear. In this study, we found that PEDV infection or expression of the nucleocapsid protein downregulates p53 through a post-translational mechanism: increasing the ubiquitination of p53 and preventing its nuclear translocation. We also show that the PEDV N protein functions by recruiting the E3 ubiquitin ligase COP1 and suppressing COP1 self-ubiquitination and protein degradation, thereby augmenting COP1-mediated degradation of p53. Additionally, COP1 knockdown compromises N-mediated p53 degradation. Functional mapping using truncation analysis showed that the N-terminal domains of N protein were responsible for interacting with COP1 and critical for COP1 stability and p53 degradation. The results presented here suggest the COP1-dependent mechanism for PEDV N protein to abolish p53 activity. This study significantly increases our understanding of PEDV in antagonizing the host antiviral factor p53 and will help initiate novel antiviral strategies against PEDV.

4.
Virus Res ; 339: 199280, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37995963

RESUMO

Classical swine fever virus (CSFV) can dampen the host innate immunity by destabilizing IRF3 upon its binding with viral Npro. High mobility group box 1 (HMGB1), a non-histone nuclear protein, has diverse functions, including inflammation, innate immunity, etc., which are closely related to its cellular localization. We investigated potential mutual interactions between CSFV and HMGB1 and their effects on virus replication. We found that HMGB1 at the protein level, but not at mRNA level, was markedly reduced in CSFV-infected or Npro-expressing IPEC-J2 cells. HMGB1 in the nuclear compartment is anti-CSFV by promoting IFN-mediated innate immune response, as evidenced by overexpression of nuclear or cytoplasmic dominant HMGB1 mutant in IPEC-J2 cells stimulated with poly(I:C). However, CSFV Npro upregulates HMGB1 acetylation, a modification that promotes HMGB1 translocation into the cytoplasmic compartment where it is degraded by lysosomes. Ethyl pyruvate could downregulate HMGB1 acetylation and prevent Npro-mediated HMGB1 reduction. Inhibition of deacetylase HDAC1 with MS275 or by RNA silencing could promote Npro-mediated HMGB1 degradation. Taken together, our study elucidates the mechanism with which HMGB1 in the nuclei initiates antiviral innate immune response to suppress CSFV replication and elaborates the pathway by which CSFV uses its Npro to evade from HMGB1-mediated antiviral immunity through upregulating HMGB1 acetylation with subsequent translocation into cytoplasm for lysosomal degradation.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Proteína HMGB1 , Suínos , Animais , Vírus da Febre Suína Clássica/genética , Acetilação , Linhagem Celular , Lisossomos , Replicação Viral/fisiologia
5.
Int J Biol Macromol ; 253(Pt 7): 127493, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37858656

RESUMO

PRRSV (Porcine Reproductive and Respiratory Syndrome Virus) is a major swine pathogen causing economic losses. To the date, effective broad PRRSV inhibitory strategies have not been available in practice yet. Targeting the key viral receptor CD163 to block PRRSV entry has emerged as an alternative approach beside vaccines for PRRSV inhibition. As an effective therapeutic tool, nanoantibodies (Nbs) have been widely used in antiviral research. In this study, a phage display VHH library was constructed for the selection of Nbs against porcine CD163 scavenger receptor cysteine-rich 5-9 domain (SRCR5-9). After five rounds of bio-panning and indirect ELISA, seven CD163-specific Nbs (Nb1-Nb7) were identified. All obtained Nbs displayed strong affinity to CD163 receptor and excellent antiviral activity. In particular, Nb2 exhibited significant broad inhibitory effects on variable PRRSV lineages and downregulated virus-related NF-κB signaling. Further studies suggested that Nbs mainly exerted antiviral functions by interfering with virus attachment stage, and also decreased the transcription of CD163. The conformational epitopes recognized by Nbs were localized in the SRCR5 domain of CD163, a crucial region in PRRSV infection. Overall, our findings provide a novel insight into the biofunction of CD163 in antiviral infection and the development of broad-spectrum strategies against PRRSV.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Anticorpos de Domínio Único , Suínos , Animais , Anticorpos de Domínio Único/farmacologia , Antivirais/farmacologia
6.
Appl Environ Microbiol ; 89(10): e0101723, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37787570

RESUMO

The foodborne bacterial pathogen Listeria monocytogenes exhibits remarkable survival capabilities under challenging conditions, severely threatening food safety and human health. The orphan regulator DegU is a pleiotropic regulator required for bacterial environmental adaptation. However, the specific mechanism of how DegU participates in oxidative stress tolerance remains unknown in L. monocytogenes. In this study, we demonstrate that DegU suppresses carbohydrate uptake under stress conditions by altering global transcriptional profiles, particularly by modulating the transcription of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS)-related genes, such as ptsH, ptsI, and hprK. Specifically, in the absence of degU, the transcripts of ptsI are significantly upregulated and those of hprK are significantly downregulated in response to copper ion-induced stress. Overexpression of ptsI significantly increases bacterial growth in vitro, while overexpression of hprK leads to a decrease in growth. We further demonstrate that DegU directly senses oxidative stress, downregulates ptsI transcription, and upregulates hprK transcription. Additionally, through an electrophoretic mobility shift assay, we demonstrate that DegU directly regulates the transcription of ptsI and hprK by binding to specific regions within their respective promoter sequences. Notably, the putative pivotal DegU binding sequence for ptsI is located from 38 to 68 base pairs upstream of the ptsH transcription start site (TSS), whereas for hprK, it is mapped from 36 to 124 base pairs upstream of the hprK TSS. In summary, we elucidate that DegU plays a significant role in suppressing carbohydrate uptake in response to oxidative stress through the direct regulation of ptsI and hprK.ImportanceUnderstanding the adaptive mechanisms employed by Listeria monocytogenes in harsh environments is of great significance. This study focuses on investigating the role of DegU in response to oxidative stress by examining global transcriptional profiles. The results highlight the noteworthy involvement of DegU in this stress response. Specifically, DegU acts as a direct sensor of oxidative stress, leading to the modulation of gene transcription. It downregulates ptsI transcription while it upregulates hprK transcription through direct binding to their promoters. Consequently, these regulatory actions impede bacterial growth, providing a defense mechanism against stress-induced damage. These findings gained from this study may have broader implications, serving as a reference for studying adaptive mechanisms in other pathogenic bacteria and aiding in the development of targeted strategies to control L. monocytogenes and ensure food safety.


Assuntos
Listeria monocytogenes , Humanos , Listeria monocytogenes/fisiologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Carboidratos , Estresse Oxidativo
7.
J Virol ; 97(10): e0111523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796122

RESUMO

IMPORTANCE: Of the flaviviruses, only CSFV and bovine viral diarrhea virus express Npro as the non-structural protein which is not essential for viral replication but functions to dampen host innate immunity. We have deciphered a novel mechanism with which CSFV uses to evade the host antiviral immunity by the N-terminal domain of its Npro to facilitate proteasomal degradation of Sp1 with subsequent reduction of HDAC1 and ISG15 expression. This is distinct from earlier findings involving Npro-mediated IRF3 degradation via the C-terminal domain. This study provides insights for further studies on how HDAC1 plays its role in antiviral immunity, and if and how other viral proteins, such as the core protein of CSFV, the nucleocapsid protein of porcine epidemic diarrhea virus, or even other coronaviruses, exert antiviral immune responses via the Sp1-HDAC1 axis. Such research may lead to a deeper understanding of viral immune evasion strategies as part of their pathogenetic mechanisms.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Endopeptidases , Histona Desacetilase 1 , Imunidade Inata , Complexo de Endopeptidases do Proteassoma , Fator de Transcrição Sp1 , Proteínas Virais , Animais , Peste Suína Clássica/imunologia , Peste Suína Clássica/metabolismo , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/enzimologia , Vírus da Febre Suína Clássica/imunologia , Vírus da Febre Suína Clássica/metabolismo , Vírus da Febre Suína Clássica/patogenicidade , Endopeptidases/química , Endopeptidases/metabolismo , Histona Desacetilase 1/biossíntese , Histona Desacetilase 1/metabolismo , Fator Regulador 3 de Interferon , Proteínas do Nucleocapsídeo/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fator de Transcrição Sp1/metabolismo , Suínos/virologia , Proteínas do Core Viral/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Ubiquitinas/metabolismo , Citocinas/metabolismo , Vírus da Diarreia Epidêmica Suína/imunologia , Vírus da Diarreia Epidêmica Suína/metabolismo , Domínios Proteicos
8.
mBio ; 14(3): e0340822, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37052505

RESUMO

Porcine epidemic diarrhea virus (PEDV) is the main etiologic agent causing acute swine epidemic diarrhea, leading to severe economic losses to the pig industry. PEDV has evolved to deploy complicated antagonistic strategies to escape from host antiviral innate immunity. Our previous study demonstrated that PEDV downregulates histone deacetylase 1 (HDAC1) expression by binding viral nucleocapsid (N) protein to the transcription factor Sp1, inducing enhanced protein acetylation. We hypothesized that PEDV inhibition of HDAC1 expression would enhance acetylation of the molecules critical in innate immune signaling. Signal transducer and activator of transcription 1 (STAT1) is a crucial transcription factor regulating expression of interferon (IFN)-stimulated genes (ISGs) and anti-PEDV immune responses, as shown by overexpression, chemical inhibition, and gene knockdown in IPEC-J2 cells. We further show that PEDV infection and its N protein overexpression, although they upregulated STAT1 transcription level, could significantly block poly(I·C) and IFN-λ3-induced STAT1 phosphorylation and nuclear localization. Western blotting revealed that PEDV and its N protein promote STAT1 acetylation via downregulation of HDAC1. Enhanced STAT1 acetylation due to HDAC1 inhibition by PEDV or MS-275 (an HDAC1 inhibitor) impaired STAT1 phosphorylation, indicating that STAT1 acetylation negatively regulated its activation. These results, together with our recent report on PEDV N-mediated inhibition of Sp1, clearly indicate that PEDV manipulates the Sp1-HDAC1-STAT1 signaling axis to inhibit transcription of OAS1 and ISG15 in favor of its replication. This novel immune evasion mechanism is realized by suppression of STAT1 activation through preferential modulation of STAT1 acetylation over phosphorylation as a result of HDAC1 expression inhibition. IMPORTANCE PEDV has developed sophisticated evasion mechanisms to escape host IFN signaling via its structural and nonstructural proteins. STAT1 is one of the key transcription factors in regulating expression of ISGs. We found that PEDV and its N protein inhibit STAT1 phosphorylation and nuclear localization via inducing STAT1 acetylation as a result of HDAC1 downregulation, which, in turn, dampens the host IFN signaling activation. Our study demonstrates a novel mechanism that PEDV evades host antiviral innate immunity through manipulating the reciprocal relationship of STAT1 acetylation and phosphorylation. This provides new insights into the pathogenetic mechanisms of PEDV and even other coronaviruses.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Animais , Suínos , Interferon lambda , Fosforilação , Linhagem Celular , Acetilação , Antivirais , Fatores de Transcrição , Fator de Transcrição STAT1
9.
Vet Res ; 54(1): 9, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737830

RESUMO

Of the three branches of unfolded protein response (UPR) that were reportedly activated by porcine epidemic diarrhea virus (PEDV), PERK is recently shown to act as an upstream regulator of oxidative response of the cells. However, it remains unknown if and how PERK activation during PEDV infection would result in oxidative stress, and whether activation of PERK and its downstream molecules affect PEDV replication. Here, we demonstrate that infection with the PEDV strain YJH/2015 triggered UPR in Vero E6 cells by activating the PERK/eIF2α pathway and led to significant increase in the expression of proapoptotic protein C/EBP homologous protein (CHOP) and ER oxidoreductase 1 alpha (ERO1α). Inhibition of PERK by short hairpin RNA (shRNA) or GSK2606414 and knockdown of CHOP by small interfering RNA reduced expression of ERO1α and generation of ROS in PEDV-infected cells. Inhibition of ERO1α by shRNA or EN460 decreased PEDV-induced ROS generation. Genetic or pharmacological inhibition of each component of PERK, CHOP, ERO1α, and ROS led to significant suppression of PEDV replication. Collectively, our study provides the first evidence that PEDV manipulates endoplasmic reticulum to perturb its redox homeostasis via the PERK-CHOP-ERO1α-ROS axis in favor of its replication.


Assuntos
Vírus da Diarreia Epidêmica Suína , Animais , Chlorocebus aethiops , Vírus da Diarreia Epidêmica Suína/fisiologia , Espécies Reativas de Oxigênio/metabolismo , RNA Interferente Pequeno/metabolismo , Suínos , Resposta a Proteínas não Dobradas , Células Vero , Replicação Viral/fisiologia , eIF-2 Quinase
10.
Environ Sci Pollut Res Int ; 30(7): 19304-19312, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36227495

RESUMO

Eighty 24-week-old laying hens were divided into eight groups, seven given a single oral dose per chicken with 7 dosing levels from 13.6 to 137 mg/kg body weight (bw) and one serving as sham control. The hens were observed for 28 days for clinical abnormalities, egg yield, and body weight. Egg samples from groups of low-to-medium doses were analyzed for residues of fipronil and its metabolites by LC-MS/MS. Blood and organ samples from hens of the group receiving 63.3 mg/kg bw were collected for hematochemical and histopathological analysis. We found that the median lethal dose (LD50) of fipronil was 74 mg/kg bw for laying hens. No death occurred, and there were no obvious changes in body weight and egg production in the hens receiving doses at or below 20 mg/kg bw. In the hens that survived exposure to the dose at 63.3 mg/kg bw, there was significant reduction in body weight and egg yield; histopathological changes in the liver and kidney; and increased levels of creatine, urea, glutamate oxaloacetate transferase, and glutamate pyruvic transaminase. Fipronil-sulfone was the residual marker in eggs with significantly higher concentrations and longer withdrawal periods than its maternal compound. We conclude that fipronil is efficiently transformed into fipronil-sulfone in the body with subsequent excretion into eggs. More attention should be paid to the potential food safety risk of fipronil-sulfone because of its persistence in eggs.


Assuntos
Galinhas , Espectrometria de Massas em Tandem , Animais , Feminino , Cromatografia Líquida , Galinhas/metabolismo , Ovos/análise , Peso Corporal , Sulfonas
11.
J Nanobiotechnology ; 20(1): 493, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424615

RESUMO

BACKGROUND: Virus-like particles (VLPs) are supramolecular structures composed of multiple protein subunits and resemble natural virus particles in structure and size, making them highly immunogenic materials for the development of next-generation subunit vaccines. The orderly and repetitive display of antigenic epitopes on particle surface allows efficient recognition and cross-link by B cell receptors (BCRs), thereby inducing higher levels of neutralizing antibodies and cellular immune responses than regular subunit vaccines. Here, we present a novel multiple antigen delivery system using SpyCatcher/Spytag strategy and self-assembled VLPs formed by porcine circovirus type 2 (PCV2) Cap, a widely used swine vaccine in solo. RESULTS: Cap-SC, recombinant Cap with a truncated SpyCatcher polypeptide at its C-terminal, self-assembled into 26-nm VLPs. Based on isopeptide bonds formed between SpyCatcher and SpyTag, classical swine fever virus (CSFV) E2, the antigen of interest, was linked to SpyTag and readily surface-displayed on SpyCatcher decorated Cap-SC via in vitro covalent conjugation. E2-conjugated Cap VLPs (Cap-E2 NPs) could be preferentially captured by antigen presenting cells (APCs) and effectively stimulate APC maturation and cytokine production. In vivo studies confirmed that Cap-E2 NPs elicited an enhanced E2 specific IgG response, which was significantly higher than soluble E2, or the admixture of Cap VLPs and E2. Moreover, E2 displayed on the surface did not mask the immunodominant epitopes of Cap-SC VLPs, and Cap-E2 NPs induced Cap-specific antibody levels and neutralizing antibody levels comparable to native Cap VLPs. CONCLUSION: These results demonstrate that this modularly assembled Cap-E2 NPs retains the immune potential of Cap VLP backbone, while the surface-displayed antigen significantly elevated E2-induced immune potency. This immune strategy provides distinctly improved efficacy than conventional vaccine combination. It can be further applied to the development of dual or multiple nanoparticle vaccines to prevent co-infection of PCV2 and other swine pathogens.


Assuntos
Circovirus , Nanopartículas , Suínos , Animais , Vacinas Combinadas , Anticorpos Neutralizantes , Vacinas de Subunidades
12.
Viruses ; 14(11)2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36366511

RESUMO

Porcine epidemic diarrhea virus (PEDV) infection causes huge economic losses to the pig industry worldwide. DNAJA3, a member of the Hsp40 family proteins, is known to play an important role in the replication of several viruses. However, it remains unknown if it interacts with PEDV. We found that DNAJA3 interacted with PEDV S1, initially with yeast two-hybrid screening and later with Co-IP, GST pull-down, and confocal imaging. Further experiments showed the functional relationship between DNAJA3 and PEDV in the infected IPEC-J2 cells. DNAJA3 overexpression significantly inhibited PEDV replication while its knockdown had the opposite effect, suggesting that it is a negative regulator of PEDV replication. In addition, DNAJA3 expression could be downregulated by PEDV infection possibly as the viral strategy to evade the suppressive role of DNAJA3. By gene silencing and overexpression, we were able to show that DNAJA3 inhibited PEDV adsorption to IPEC-J2 cells but did not affect virus invasion. In conclusion, our study provides clear evidence that DNAJA3 mediates PEDV adsorption to host cells and plays an antiviral role in IPEC-J2 cells.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Suínos , Animais , Chlorocebus aethiops , Vírus da Diarreia Epidêmica Suína/genética , Adsorção , Replicação Viral , Células Vero , Proteínas/farmacologia
13.
J Virol ; 96(22): e0127422, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36300938

RESUMO

Porcine circovirus type 2 (PCV2), the causative agent of porcine circovirus-associated diseases (PCVAD), is known to induce oxidative stress, activate p53 with induction of cell cycle arrest, and trigger the PERK (protein kinase R-like endoplasmic reticulum kinase) branch of the endoplasmic reticulum (ER) stress pathway. All these cellular responses could enhance PCV2 replication. However, it remains unknown whether PERK activation by PCV2 is involved in p53 signaling with subsequent changes of cell cycle. Here, we demonstrate that PCV2 infection induced cell cycle arrest at S phase to favor its replication via the PERK-reactive oxygen species (ROS)-p53 nexus. PCV2 infection promoted phosphorylation of p53 (p-p53) at Ser15 in porcine alveolar macrophages. Inhibition of PERK by RNA silencing downregulated total p53 (t-p53) and p-p53. Treatment with the MDM2 inhibitor nutlin-3 led to partial recovery of t-p53 in perk-silenced and PCV2-infected cells. perk silencing markedly downregulated ROS production. Scavenging of ROS with N-acetylcysteine (NAC) of PCV2-infected cells downregulated t-p53 and p-p53. Increased accumulation of p-p53 in the nuclei during PCV2 infection could be downregulated by silencing of perk or NAC treatment. Further studies showed that perk silencing or NAC treatment alleviated S phase accumulation and downregulated cyclins E1 and A2 in PCV2-infected cells. These findings indicate that the PCV2-activated PERK-ROS axis promotes p-p53 and contributes to cell cycle accumulation at S phase when more cellular enzymes are available to favor viral DNA synthesis. Overall, our study provides a novel insight into the mechanism how PCV2 manipulates the host PERK-ROS-p53 signaling nexus to benefit its own replication via cell cycle arrest. IMPORTANCE Coinfections or noninfectious triggers have long been considered to potentiate PCV2 infection, leading to manifestation of PCVAD. The triggering mechanisms remain largely unknown. Recent studies have revealed that PERK-mediated ER stress, oxidative stress, and cell cycle arrest during PCV2 infection are conducive to viral replication. However, how PCV2 employs such host cell responses requires further research. Here, we provide a novel mechanism of PCV2-induced ER stress and enhanced viral replication: the PCV2-activated PERK-ROS-p53 nexus increases S phase cell population, a cell cycle period of DNA synthesis favorable for PCV2 replication. The fact that PCV2 deploys the simple ROS molecules to activate p53 to benefit its replication provides novel insights into the triggering factors, that is, certain stimuli or management measures that induce ER stress with subsequent generation of ROS would exacerbate PCVAD. Use of antioxidants is justified on farms where PCVAD is severe.


Assuntos
Pontos de Checagem do Ciclo Celular , Infecções por Circoviridae , Circovirus , Doenças dos Suínos , Animais , Acetilcisteína/farmacologia , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/virologia , Circovirus/fisiologia , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Fase S , Suínos , Doenças dos Suínos/virologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Replicação Viral/genética , Estresse do Retículo Endoplasmático , eIF-2 Quinase/metabolismo
14.
Microbiol Spectr ; 10(5): e0247922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36194132

RESUMO

High-resolution and efficient typing for the bacterial pathogen is essential for tracking the sources, detecting or diagnosing variants, and conducting a risk assessment. However, a systematic in-field investigation of Salmonella along the food chain has not been documented. This study assessed 12 typing methods, such as antimicrobial-resistance (AMR) gene profile typing, Core Genome Multilocus Sequence Typing (cgMLST), and CRISPR multi-virulence locus sequence typing (CRISPR-MVLST), to evaluate their effectiveness for use in routine monitoring of foodborne Salmonella transmission along the poultry production chain. During 2015-16, a total of 1,064 samples were collected from poultry production chain, starting from breeding farms and slaughterhouses to the markets of Zhejiang province in China. A total of 61 consecutive unique Salmonella isolates recovered from these samples were selected for genome sequencing and further comparative typing analysis. Traditional typing methods, including serotyping, AMR phenotype-based typing, as well as modern genotyping approaches, were evaluated and compared by their discrimination index (DI). The results showed that the serotyping method identified nine serovars. The gold standard cgMLST method indicated only 18 different types (DI = 0.8541), while the CRISPR-MVLST method detected 30 types (DI = 0.9628), with a higher DI than all examined medium-resolution WGS-based genotyping methods. We demonstrate that the CRISPR-MVLST might be used as a tool with high discriminatory power, comparable ease of use, ability of tracking the source of Salmonella strains along the food chain and indication of genetic features especially virulence genes. The available methods with different purposes and laboratory expertise were also illustrated to assist in rational implementation. IMPORTANCE In public health field, high-resolution and efficient typing of the bacterial pathogen is essential, considering source-tracking and risk assessment are fundamental issues. Currently, there are no recommendations for applying molecular characterization methods for Salmonella along the food chain, and a systematic in-field investigation comparing subtyping methods in the context of routine surveillance was partially addressed. Using 1,064 samples along a poultry production chain with a considerable level of Salmonella contamination, we collected representative isolates for genome sequencing and comparative analysis by using 12 typing techniques, particularly with whole-genome sequence (WGS) based methods and a recently invented CRISPR multi-virulence locus sequence typing (CRISPR-MVLST) method. CRISPR-MVLST is identified as a tool with higher discriminatory power compared with medium-resolution WGS-based typing methods, comparable ease of use and proven ability of tracking Salmonella isolates. Besides, we also offer recommendations for rational choice of subtyping methods to assist in better implementation schemes.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Salmonella , Salmonella/genética , Tipagem de Sequências Multilocus/métodos , Sorogrupo , Análise de Sequência de DNA
15.
Front Microbiol ; 13: 976334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016795

RESUMO

Vibrio parahaemolyticus is a marine pathogen thought to be the leading cause of seafood-borne gastroenteritis globally, urgently requiring efficient management methods. V. parahaemolyticus encodes 12 resistance/nodulation/division (RND) efflux systems. However, research on these systems is still in its infancy. In this study, we discovered that the inactivation of VmeL, a membrane fusion protein within the RND efflux systems, led to reduction of the ability of biofilm formation. Further results displayed that the decreased capacity of Congo red binding and the colony of ΔvmeL is more translucent compared with wild type strains, suggested reduced biofilm formation due to decreased production of biofilm exopolysaccharide upon vmeL deletion. In addition, the deletion of vmeL abolished surface swarming and swimming motility of V. parahaemolyticus. Additionally, deletion of vmeL weakened the cytotoxicity of V. parahaemolyticus towards HeLa cells, and impaired its virulence in a murine intraperitoneal infection assay. Finally, through RNA-sequencing, we ascertained that there were 716 upregulated genes and 247 downregulated genes in ΔvmeL strain. KEGG enrichment analysis revealed that quorum sensing, bacterial secretion systems, ATP-binding cassette transporters, and various amino acid metabolism pathways were altered due to the inactivation of vmeL. qRT-PCR further confirmed that genes accountable to the type III secretion system (T3SS1) and lateral flagella were negatively affected by vmeL deletion. Taken together, our results suggest that VmeL plays an important role in pathogenicity, making it a good target for managing infection with V. parahaemolyticus.

16.
Vet Microbiol ; 273: 109525, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35963027

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a swine enterovirus that causes huge economic losses to the swine industry. It is of great interest to understand the gene expression patterns of host responses to PEDV infection and the mechanistic insights. Here, we report the differences of gene expression profiles by RNA-seq in the porcine small intestinal 2-D enteroids cells infected with low-passage (16 passages, P16) and high-passage (120 passages, P120) PEDV strains for 12, 24 and 36 h. Of the 57 genes differentially expressed in P16 PEDV infected enteroids, 49 were upregulated and 7 downregulated at all time points. There were 247 genes with different patterns of expression in the enteroids infected with P120 PEDV: upregulation seen with 105 genes and downregulation with the remaining majority at all time points. Infection of both P16 and P120 PEDV strains led to significant upregulation of ISGs, such as ISG15, MX1 and RSAD2. In particular, P120 PEDV infection inhibited transcription of genes related to lipid metabolism, including those involved in lipid decomposition, absorption, bile secretion and cholesterol metabolism. Treatment of the infected enteroids with palmitic acid resulted in marked reduction of replication of both P16 and P120 PEDV strains. These results indicate that PEDV might manipulate lipid metabolism of the host to benefit its replication. Further research is warranted to study the mechanisms how palmitic acid inhibits PEDV replication.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Chlorocebus aethiops , Infecções por Coronavirus/genética , Infecções por Coronavirus/veterinária , Perfilação da Expressão Gênica/veterinária , Metabolismo dos Lipídeos/genética , Ácido Palmítico , Vírus da Diarreia Epidêmica Suína/genética , Suínos , Doenças dos Suínos/genética , Células Vero
17.
Vet Microbiol ; 273: 109548, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36037618

RESUMO

Porcine circovirus type 2 (PCV2) infection induces endoplasmic reticulum (ER) stress and oxidative stress. These cellular responses could be connected with apoptosis. However, the mechanisms that link ER stress and oxidative stress in PCV2-induced apoptosis are poorly characterized. Here, we demonstrate that PCV2 infection increased expression of proapoptotic protein C/EBP homologous protein (CHOP) and ER oxidoreductase 1 alpha (ERO1α). Inhibition of CHOP by RNA silencing or inhibition of ERO1α by short hairpin RNA or EN460 repressed PCV2-induced reactive oxygen species (ROS) generation, cytosolic calcium level, and apoptotic rate in PK-15 cells. Overexpression of ERO1α enhanced PCV2-induced oxidative stress, caspase-3 cleavage, and apoptosis rate. Treatment of PCV2-infected cells with ROS scavenger N-acetyl-L-cysteine downregulated PCV2-induced ROS production, cytosolic calcium level, and apoptosis rate, but intriguingly decreased expression of CHOP and ERO1α. Thus, we propose that PCV2 induces apoptosis through ER Stress via CHOP-ERO1α-ROS signaling in host cells.


Assuntos
Circovirus , Animais , Apoptose , Cálcio , Circovirus/genética , Estresse do Retículo Endoplasmático , Espécies Reativas de Oxigênio/metabolismo , Suínos
18.
Anim Dis ; 2(1): 11, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669451

RESUMO

Porcine circovirus type 2 (PCV2) is the main causative agent of porcine circovirus-associated diseases, and it causes substantial economic losses in the swine industry each year. It is crucial to develop an effective vaccine against the circulating strain PCV2d, which is prone to substantial degrees of mutation. In this study, a truncated form of flagellin (tFlic: 85-111 aa) was inserted into the C-terminal sequence of 2dCap, and Western blotting results showed that recombinant Cap-tFlic VLPs were successfully expressed. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) data indicated that purified recombinant Cap-tFlic fusion proteins existed in the form of polymers and that tFlic could not affect the formation and internalization of VLPs. Integrated Cap-tFlic VLPs induced the expression of antigen presentation-related factors (MHC-II and CD86) by bone marrow-derived dendritic cells (BM-DCs), and the expression of TLR5-related factors (TNF-α) was dramatically elevated. Mice intramuscularly immunized with Cap-tFlic VLPs exhibited significantly higher levels of Cap-specific antibodies and neutralizing antibodies than mice immunized with wild-type Cap VLPs. The data obtained in the current study indicate that Cap-tFlic may be a candidate for a subunit vaccine against PCV2 in the future.

19.
Biosens Bioelectron ; 213: 114437, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35696867

RESUMO

Magnetic relaxation switching (MRS) biosensors are attractive in the field of food safety owing to their simplicity and high signal-to-noise ratio. But they are less in sensitivity and stability caused by the insufficient crosslinking or non-specific binding of magnetic nanoparticles (MNPs) with targets. To address this problem, the CRISPR-Cas12a system was introduced into an MRS biosensor for the first time, to precisely control the binding of two types of MNPs with sizes of 130 nm (MNP130) and 30 nm (MNP30), for the sensitive detection of Salmonella. Delicately, the biosensor was designed based on the different magnetic properties of the two sizes of MNPs. The target Salmonella activated the collateral cleavage activity of the CRISPR-Cas12a system, which inhibited the binding of the two sizes of MNPs, resulting in an increase of unbound MNP30. After separating MNP130-MNP30 complexes and MNP130 from MNP30, the free MNP30 left in solution acted as transverse relaxation time (T2) signal reporters for Salmonella detection. Under optimized conditions, the CRISPR-MRS biosensor presented a limit of detection of 1.3 × 102 CFU mL-1 for Salmonella, which is lower than most MRS biosensor analogues. It also showed satisfactory specificity and performed well in spiked chicken meat samples. This biosensing strategy not only extends the reach of the CRISPR-Cas12a system in biosensors but also offers an alternative for pathogen detection with satisfactory sensitivity.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Sistemas CRISPR-Cas/genética , Fenômenos Magnéticos , Magnetismo , Salmonella/genética
20.
Microb Pathog ; 167: 105546, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35512440

RESUMO

As a halophilic food-borne pathogen, Vibrio parahaemolyticus continueo be a major health issue worldwide. The pathogenic mechanisms of V. parahaemolyticus are still not fully understood. One of the most abundant and widely distributed groups of helix-turn-helix transcription factors is the GntR family of regulators, which are involved in the regulation of various biological processes in bacteria, but little is known about their functions in V. parahaemolyticus. Here, we identified a gene designated as hutC in V. parahaemolyticus SH112 that encodes a member belongs to the HutC subfamily of the large GntR transcriptional regulator family. Compared to the wild type, the hutC mutant strain was significantly more sensitive to acid, bile salt, Triton X-100, and sodium dodecyl sulfate stresses. Our results showed that HutC is required for optimal swimming motility but not necessary for the swarming of V. parahaemolyticus. In addition, inactivation of hutC in V. parahaemolyticus SH112 led to decreased biofilm formation, reduced cytotoxicity in Coca-2 cells, and defective virulence in vivo compared to the wild-type strain. Furthermore, transcriptome sequencing (RNA-Seq) analysis and real-time PCR indicated 4 upregulated and 14 downregulated genes in the hutC mutant strain. Functional analysis revealed that 4 upregulated genes were related to the histidine metabolism pathway. The 14 downregulated genes were mostly related to the cellular metabolic process, binding, and membrane part. This study presents evidence that HutC is involved in bacterial survival under conditions of stress, swimming motility, biofilm formation, cytotoxicity, virulence, and gene regulation of V. parahaemolyticus during infection.


Assuntos
Vibrio parahaemolyticus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vibrio parahaemolyticus/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...